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709. ,4 New Solution of the Wave Equation for H-. 
By B. F. GRAY and H. 0. PRITCHARD. 

A method of obtaining the exact solution of the wave equation for H- 
from the known exact solution for H,+ is examined and shown to be satis- 
factory; the analysis shows that there exists only one state of the negative 
hydrogen ion which is stable with respect to a normal hydrogen atom. 

INSPECTION of the wave equations for H- and H2+, denoted in subscripts by A and 
B respectively, after separation of the translational motion, reveals that they are of the 
same form, differing only by an exchange of the masses of the electron and the proton, 
m and M respectively. If the lowest eigenvalue of the equation for H2+ is 

then it follows that 
EB = E(M, m) 

EA = E(m, M )  

with a similar relation holding for the eigenfunctions. This of course is only true for the 
exact eigenvalues and eigenfunctions, the difference IEA - Erm, M)I giving us a (very 
sensitive) test of the accuracy of an approximation E ( M ,  m) to Eg. This correspondence 
would, in principle, allow us to obtain E D  from Eg, but we cannot do this in practice because 
EA has only been obtained directly by use of the variation principle. 

The wave equations of H- and H2+ have not hitherto been identified purely because of 
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the choice of the origin of the co-ordinates. 
Fig. 1) with 

If for H- we take a co-ordinate system (see 

as our variables, then the wave equation is identical with that for Hzf with nuclear motion , 
except for the interchange of m and M .  It is now permissible (the principle of covariance) 
to consider the electrons in H- as moving in the field of a rapidly moving proton, i.e., 
the “ inverse ” of the Born-Oppenheimer approximation for H2+. The reason is that the 
“ electronic energy ’’ of H2+ is an energy of motion of the electron relative to the two nuclei, 
and if this motion is rapid, it is equally permissible to speak of the motion of the two 
protons as rapid, relative to the electron. Whichever origin we choose, the energy of the 
relative motion must be invariant. Furthermore, it is convenient to separate off the 
energy of a hydrogen atom, corrected for nuclear motioii; this energy is proportional to 
[(llm) + (l/M)]-l and is clearly invariant under the mass transformation. Hence the 
bond dissociation energy of H2+ must transform into the ionisation potential of H- and 
we can deal directly with these quantities. 

FIG. 1. 

+ e  

Intuitively, the application of the principle of covariance means that we can picture 
the H- ion as a proton about which is distributed a Morse-type oscillator, i.e., the two 
electrons are vibrating with respect to each other and their motion relative to the nucleus 
is superimposed upon this vibration. They are, of course, also rotating relatively to an 
axis fixed in space, but the contribution to the effective potential from centrifugal effects 
is zero for the lowest energy level ( j  = 0) and is so great for j = 1 (owing to the small 
moment of inertia) that the system would ionise (the analogue of dissociation of molecules 
by rotation). Hence we need consider only the ground rotational levels of any electron 
vibrational states. 

Curve A of Fig. 2 shows the total energy of H2+ (taken from the exact solution of the 
static wave equation by Bates, Ledsham, and Stewart l), referred to the (invariant) energy 
of a hydrogen atom as zero. This is now to be interpreted as representing the vibration 
with respect to each other of the two electrons in H-. Assuming that this is a Morse curve, 
we can deduce the relevant constants (i.e. , D the minimum energy and a the anharmonicity 
constant) from a knowledge of three equally spaced points in the neighbourhood of the 
minimum.2 The important quantity, which determines both the number of allowed 
energy levels and their energies: is 

k = [ 2 ~ 2 / ( M ’ D ) ] / a h  

where M’ is the mass of the vibrating particles (if they are both equal). For curve A we 
find that k,  = 20.32 whence kA = KB/4(1S36) 0.47, and since for a Morse oscillator the 
number of allowed energy levels is the largest integer less than (k + +) this means that a t  

Bates, Ledsham, and Stewart. Phil. Trans., 1953, A ,  246, 215. 
Rosen, Phys. Review, 1931, 38, 2099. 
Condon and Morse, “ Quantum Mechanics,” McGraw-Hill, New York, 1929, pp. 71-72. 
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this level of approximation H- is not stable. (As a corollary, in the fixed-nucleus approxi- 
mation, the equilibrium internuclear separation in H,+ is precisely 2a0, since this is the 
most probable interelectronic separation for this model of H-.) 

To obtain a positive electron affinity it is necessary to go to the next stage of approxi- 
mation in H,+, Le. ,  to include adiabatic coupling terms between the electronic and the 
nuclear motions. These have already been evaluated at  some internuclear separations 
by Dalgarno and McCarroll* who found them to be repulsive below 2a, but attractive at  
greater distances (but negligible a t  all separations, affecting only the fifth significant figure 
in the bond dissociation energy-this directly contradicted Wu and Bhatia who found 
them to  affect higher places, being repulsive for distances greater than 2 4 .  If we take 
Dalgarno and RlcCarroll's corrections which, although they are negligible for Hit  itself, 
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FIG.  2. 
The shaded region yepresents the ulzcertuiitty 
in the zevo-point energy arising from the 
assumption that curve B i s  a true Morse 
cwve  over the whole oscillatiogz. 

become multiplied by 1836 under the mass transformation, we obtain curve B of Fig. 2 
for the variation of energy with interelectronic separation. This is a reasonable Morse 
curve, since fitting various sets of points gives values in the range a = 1.030 & 0.065 ao-l 
and D = 0.3290 & 0.0075 Rydberg. These mean values lead to a value for k A  of 0.788, 
thus establishing that there is almost certainly only one level of H- stable with respect 
to a normal hydrogen atom (other states of H2+ lie very much higher in the energy spectrum 
although adiabatic coupling terms may be larger 4). The energy of a Morse oscillator is 

E = -D(k - q t  - +)2/k2 

where n, the quantum number of the vibration, can range from zero to the largest integer 
less than (h  - +). Substituting the value of k found for curve B in this expression leads 
to an electron afinity of 0.044 Rydberg, i.e., a total energy of -1.044 5 0.012 Rydberg, 
compared with the best variation calculation of - 1.0554 Rydberg. 

In order to obtain the energy limit of the adiabatic approximation, it would be necessary 
to calculate the coupling corrections at  more internuclear separations than are a t  present 
available and to solve the wave equation numerically by using curve B for the potential 
energy, in order to avoid the assumption that it is a Morse curve. However, it is unlikely 
that the correct energy will be approached unless non-diagonal elements are considered 
in the coupling between nuclear and electronic motions. Nevertheless, we are dealing 

Dalgarno and McCarroll, Proc. Roy. Soc., 1956, A ,  23'4, 353. 
Wu and Bhatia, J .  Chesn. Phys., 1956, 24, 48. 
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here with a process which converges to the correct eigenvalue (this has not yet been shown 
to be so for the Hylleraas method, particularly in the case of H-); we hope to undertake 
this programme soon and at  the same time to study the helium atom (k, by solving the 
H,+ problem with a doubly-charged electron) for which there are many more stable levels, 
in order to establish the exact correspondence between the various states under the mass 
transformation, i.e., the correspondence between electronic, vibrational, and rotational 
excitation for the molecule on the one hand, and electronic excitation and spin and orbital 
angular momentum for the atom on the other. 

The energy value obtained in the present calculation proves beyond doubt that Dalgarno 
and McCarroll’s corrections are correct; those of Wu and Bhatia would give an energy 
corresponding to an even more unstable system than is obtained without using the 
corrections. The calculation also re-emphasises the fact that it is only the total energy of 
the system which is meaningful and that the nature of the individual energy terms depends 
on how the problem is tackled. In our calculation, the individual terms are coulombic, 
kinetic, adiabatic coupling, and zero-point vibration energies, whereas in the standard 
treatments one has coulombic, kinetic, exchange, and correlation-energy terms; further- 
more, the inclusion of coupling between nuclear and electronic motions increases the most 
probable interelectron distance from 2a0 to 2.69a0, an effect which is associated with a 
“ screening constant ” in orbital treatments. 
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